1143 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。

解法

  • 动态规划。时间复杂度O(n^ 2),空间复杂度O(n^ 2)。

状态方程:

dp[i][j] 表示text1中前i个字符与text2中前j个字符的公共子序列长度。
若text1[i] == text2[j], dp[i][j] = dp[i-1][j-1]+1
否则, dp[i][j] = max(dp[i-1][j],dp[i][j-1])

Python实现

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        # 构建 DP table 和 base case
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        # 进行状态转移
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    # 找到一个 lcs 中的字符
                    dp[i][j] = 1 + dp[i-1][j-1]
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return dp[-1][-1]

该题与判断是否是字串类似,但方法不太 一样。

见LeetCode 392题